

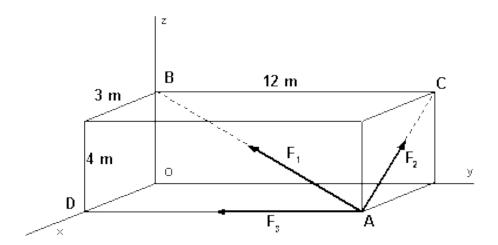
Devoir de mécanique

Exercice 1

Soit \vec{R} le résultante (*ou la somme vectorielle*) des forces . $\vec{F_1}$; $\vec{F_2}$; $\vec{F_3}$ Les normes des forces sont : F_1 = 260 N ; F_2 = 260 N ; F_3 = 260 N

Déterminer :

- a) Les coordonnées de $\overrightarrow{F_1}$; $\overrightarrow{F_2}$; $\overrightarrow{F_3}$ dans le repère ($0, \vec{x}, \vec{y}, \vec{z}$)
- b) Les coordonnées dans le repère ($O, \vec{x}, \vec{y}, \vec{z}$) et la norme de \vec{R}
- c) Les angles de \vec{R} avec les trois axes
- d) Les coordonnées du point d'intersection de \vec{R} avec le plan Oyz
- e) Les produits scalaires \overrightarrow{OA} . $\overrightarrow{F_1}$; \overrightarrow{OA} . $\overrightarrow{F_2}$; \overrightarrow{OA} . $\overrightarrow{F_3}$
- f) Les produits vectoriels $\overrightarrow{OA} \land \overrightarrow{F_1}$; $\overrightarrow{OA} \land \overrightarrow{F_2}$; $\overrightarrow{OA} \land \overrightarrow{F_3}$



Exercice 2

Une force \vec{P} de norme 100 kN est appliquée au point A.

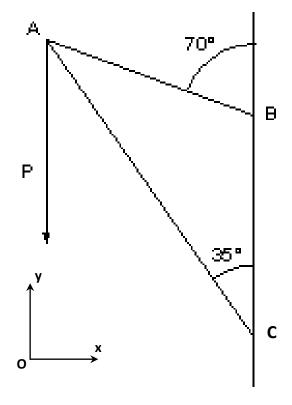
La distance AB = 5,32 m

Décomposer \vec{P} en deux forces parallèles à (AB) et (AC).(Faire une figure)

Déterminer graphiquement et par le calcul la norme de ces 2 forces issues de cette décomposition

Calculer les produits vectoriels :

 $\overrightarrow{BA} \wedge \overrightarrow{P}$ et $\overrightarrow{CA} \wedge \overrightarrow{P}$ Conclusion



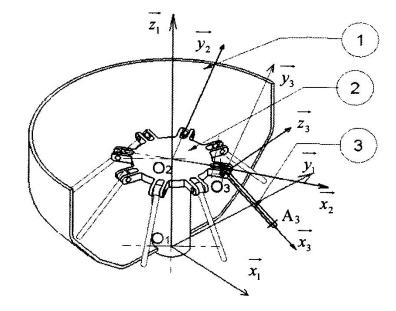
CENTRIFUGEUSE DE LABORATOIRE

Une centrifugeuse de laboratoire est constituée d'un carter 1 en forme de bol, d'un rotor 2 auquel sont fixées des éprouvettes 3.

Les éprouvettes contiennent chacune deux liquides de masse volumique différente. Sous l'effet centrifuge dû à la rotation du rotor 2, les éprouvettes

3 s'inclinent et le liquide dont la masse volumique est la plus grande est rejeté vers le fond des éprouvettes, ce qui réalise la séparation des deux

liquides



Le repère $R_1(O_1, \vec{x}_1, \vec{y}_1, \vec{z}_1)$ est associé au carter 1 Le rotor 2 a un mouvement de rotation d'axe (O_1, \vec{z}_1) par rapport au carter 1

On pose $R_2(O_2, \vec{x}_2, \vec{y}_2, \vec{z}_2)$ le repère associé au rotor 2, α = (\vec{x}_1, \vec{x}_2) et $\overrightarrow{O_1O_2}$ = h. \vec{z}_1

L'éprouvette 3 a un mouvement de rotation d'axe (O_3, \vec{y}_3) par rapport au rotor 2

On pose $R_3(O_3, \vec{x}_3, \vec{y}_3, \vec{z}_3)$ le repère associé à l'éprouvette 3, $\beta = (\vec{x}_2, \vec{x}_3)$ et $\overrightarrow{O_2O_3} = R$. \vec{x}_2 et $\overrightarrow{O_3A_3} = \ell$. \vec{x}_2

- 1 Réaliser les figures planes illustrant les 2 paramètres d'orientation α et β
- 2 Déterminer le vecteur $\overrightarrow{O_1 A_3}$
- 3 Déterminer la norme de $\overrightarrow{O_1 A_3}$
- 4 Déterminer les produits vectoriels suivants : $\vec{x}_2 \wedge \vec{x}_1$, $\vec{x}_1 \wedge \vec{y}_2$, $\vec{x}_1 \wedge \vec{z}_1$, $\vec{x}_3 \wedge \vec{z}_1$, $\vec{z}_3 \wedge \vec{z}_1$, $\vec{x}_1 \wedge \vec{x}_3$, $\vec{y}_1 \wedge \vec{z}_3$