

GMGH9A 9.6=9@@9!A 5B=J 9@@9

La figure représente un système vilebrequin-bielle-piston desaxé.

Le vilebrequin (1) est en liaison pivot d'axe (O, \vec{z}) avec le bâti (0).

La bielle (2) est en liaison pivot d'axe (A, \vec{z}) avec (1).

Le piston (3) est en liaison pivot d'axe (B, \vec{z}) avec (2) et en liaison glissière d'axe (B, \vec{y}_0) avec (0).

Le repère $R_0 = (O; \vec{x}_0, \vec{y}_0, \vec{z})$ est fixe par rapport au bâti (0).

Le repère $R_1 = (O; \vec{x}_1, \vec{y}_1, \vec{z})$ est fixe par rapport au vilebrequin (1) et est déduit d'une rotation d'angle $\theta(t)$ autour de \vec{z} du repère R_0 :

 $\theta(t) = (\widehat{\vec{x_0}}, \widehat{\vec{x_1}}) = (\widehat{\vec{y_0}}, \widehat{\vec{y_1}})$

Le repère $R_2 = (A; \vec{x}_2, \vec{y}_2, \vec{z})$ est fixe par rapport à la bielle (2) et est déduit d'une rotation d'angle $\beta(t)$ autour de \vec{z} du repère R_0 .

 $\beta(t) = (\widehat{x_0}, \widehat{x_2}) = (\widehat{y_0}, \widehat{y_2})$

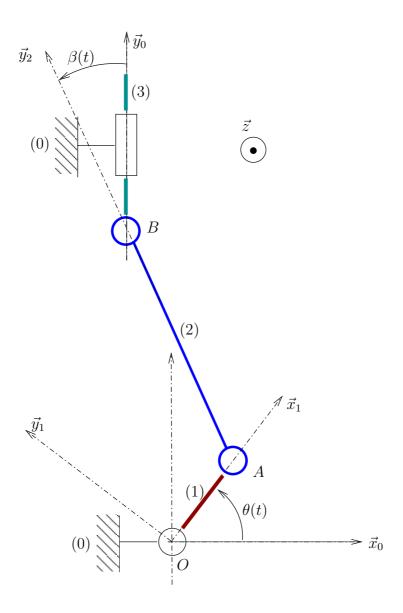
Le repère $R_3 = (B; \vec{x}_0, \vec{y}_0, \vec{z})$ est fixe par rapport au piston (3).

On a : $\overrightarrow{OA} = r\vec{x}_1$ avec r = 27 mm et $\overrightarrow{AB} = L\vec{y}_2$ avec L = 67 mm. On donne : $\dot{\theta} = 2500$ tr/mn.

- 1) Exprimez les vitesses de rotation $\vec{\Omega}(1/0)$ et $\vec{\Omega}(2/0)$.
- 2) Exprimez la vitesse du point A dans le mouvement de (1) par rapport à (0) : $\vec{V}(A \in 1/0)$. Calculez numériquement $\|\vec{V}(A \in 1/0)\|$.

Dessinez cette vitesse sur le dessin fourni.

- 3) Reliez $\vec{V}(A \in 2/0)$ et $\vec{V}(A \in 1/0)$: justifiez.
- 4) Reliez $\vec{V}(B \in 2/0)$ et $\vec{V}(B \in 3/0)$: justifiez.
- 5) Reliez $\vec{V}(B \in 2/0)$, $\vec{V}(A \in 2/0)$ et \vec{AB} uniquement afin de pouvoir dessinez $\vec{V}(B \in 2/0)$ sur le dessin fourni.

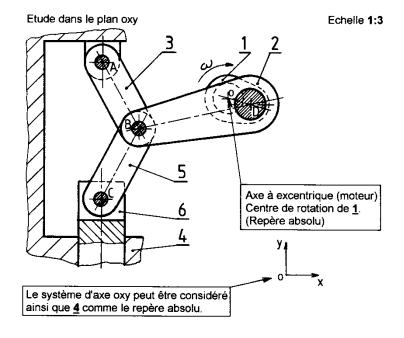

Donnez alors $\|\vec{V}(B \in 2/0)\|$

6) Déterminez graphiquement l'axe instantané de rotation de (2) par rapport à (0) : vous noterez I le centre instantané de rotation de (2) par rapport à (0), c-à-d le point de cet axe qui se trouve dans le plan $(O; \vec{x}_0, \vec{y}_0)$.

Que peut-on dire de $\vec{V}(I \in 2/0)$?

7) Calculez numériquement $\dot{\beta}$.

Nom:

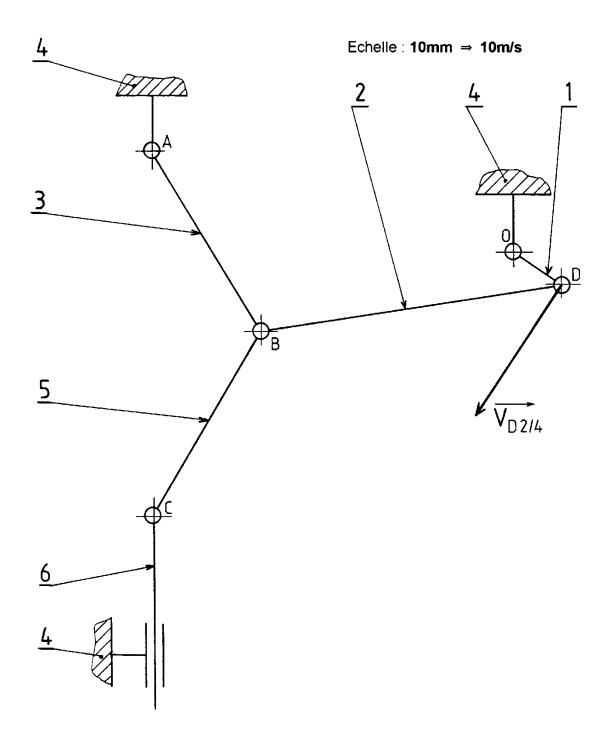

SYSTEME d'AMPLIFICATION d'EFFORTS

1. Mise en Situation

Un axe moteur lié en liaison encastrement avec la pièce 1 tourne par rapport au bâti 4 autour de l'axe perpendiculaire au plan (O,x,y).

Par un système de bielles on récupère le mouvement alternatif de 6 par rapport à 4.

Les constructions graphiques se font sur le schéma page suivante


2 - Etude cinématique

On donne sur la page 3 le vecteur vitesse $\overrightarrow{V_{D \, 2/4}}$ qui représente la vitesse du point D de la pièce (2) par rapport au bâti (4)

La longueur OD = 21mm

- 1) Vérifier que $\overrightarrow{V_{D\,2/4}} = \overrightarrow{V_{D\,1/4}}$
- 2) En déduire la vitesse de rotation $\omega_{1/4}$
- 3) Quelle est la nature du mouvement de 3/4, en déduire la direction de $\overrightarrow{V_{B\,3/4}}$
- 4) Comparer $\overrightarrow{V_{B\,2/4}}$ et $\overrightarrow{V_{B\,3/4}}$
- 5) Déterminer le C.I.R. du mouvement de 2/4 : I 2/4.
- 6) En utilisant l'équiprojectivité, déterminer graphiquement $\overrightarrow{V_{B~2/4}}$ et $\overrightarrow{V_{B~3/4}}$
- 7) Vérifier que $\overrightarrow{V_{B2/4}} = \overrightarrow{V_{B5/4}}$
- 8) Quelle est la nature du mouvement de 5/6, en déduire la direction de $\overrightarrow{V_{B5/6}}$
- 9) Quelle est la nature du mouvement de 6/4, en déduire la direction de $\overrightarrow{V_{B\,6/4}}$
- 10) Déterminer graphiquement $\overrightarrow{V_{B\,5/6}}$ et $\overrightarrow{V_{B\,6/4}}$ en écrivant la relation composition des vitesses en B entre les solides 4, 5 et 6
- 11) Par équiprojectivité, en déduire $\overrightarrow{V_{C6/4}}$
- 12) Déterminer le C.I.R. du mouvement de 5/4 : I 5/4.

