

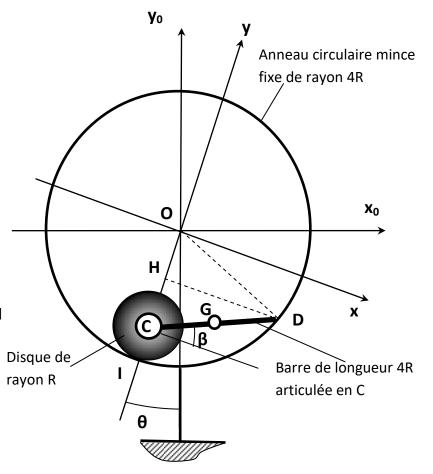
Cinématique

Disque roulant dans un anneau

Soit le système suivant constitué :

- d'un anneau circulaire fixe de rayon 4R
- d'un disque de rayon R de centre C
- d'une barre de longueur 4R articulée en C et qui glisser en D le long de l'anneau

Le système reste dans le plan xy


 $(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ repère lié à l'anneau de rayon

 $(\vec{x}, \vec{y}, \vec{z})$ repère lié au disque de rayon R

Le disque de rayon R roule sans glisser en I

On pose:

- ω : vitesse rotation du disque par rapport à la partie fixe autour de Iz
- Ω : vitesse rotation de la tige CD par rapport à la partie fixe autour de Oz

Questions

- 1) Exprimer le vecteur $\overrightarrow{\textit{OC}}$ dans le repère $(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$
- 2) Par dérivation, exprimer le vecteur vitesse $\overrightarrow{V_{C/R_0}}$ en fonction de R, θ et ses dérivées
- 3) Exprimer le vecteur vitesse $\overrightarrow{V_{I_{Disque/Anneau}}}$
- 4) Par changement de point avec I, exprimer $\overrightarrow{V_{C\ disque_{/R_0}}}$ en fonction de R, ω
- 5) En déduire une relation entre ω et θ
- 6) Exprimer $\overrightarrow{V_{C}}_{tige/R_0}$ en fonction de R et Ω
- 7) En déduire une relation entre Ω et θ
- 8) Démontrer que $\sin\beta = \frac{3}{8}$ et $\cos\beta = \frac{\sqrt{55}}{8}$
- 9) Déterminer l'expression de $\overrightarrow{V_{G/R_0}}$ en fonction de R , de θ et de ses dérivées 10) Déterminer l'expression de $\overrightarrow{\Gamma_{G/R_0}}$ en fonction de R , de θ et de ses dérivées